
CS61A

section 3
attendance (no password today)

upcoming

http://links.cs61a.org/jasonxu

hw 3

hog contest ~ optional

http://links.cs61a.org/jasonxu

CS61A

my thoughts
🤬definitely difficult

midterm recovery points

CS61A

my thoughts
🤬definitely difficult

12%

25%

Projects
33%

20%

MT1
10%

+3%
61A has a lot of resources

recursion
CS61A

things defined by themselves

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 0 * -1!

uhhhhhhhhh

-1! = -1 * -2! …

when do i stop?

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 0 * -1!

uhhhhhhhhh

-1! = -1 * -2! …

base case!

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 1

yay! 😍

base case!

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

how do we come up with this
by definition, 😱
by assuming it works, 🤪

pattern: how can we solve sub-problems to solve the current problem?

recursion
CS61A

factorial!

how do we calculate 5!
5! = 5 * 4!

for this to be true, don’t we have to

assume that ‘!’ really does what it says

well in code we can’t name a function ‘!’

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

we assume that (n-1)! works
recursive leap of faith
well… i have to test it by tracing it

well… big headache

recursion
CS61A

strategy

if you capture all the base cases
you can assume it works

so you can create the recursive call

recursion
CS61A

analogy
black friday shopping… long line

you want to know how many people in front
accurately, you only know if you’re the first person

otherwise, you have to ask the person in
front of you for their position

is this a good recursive procedure…?

recursion
CS61A

analogy
black friday shopping… long line

you want to know how many people in front
accurately, you only know if you’re the first person

otherwise, you have to ask the person in
front of you for their position and add 1

is this a recursive procedure…?

recursion
CS61A

motivation for it

operationinput

recursion
CS61A

things defined by themselves

operationinput output

recursion
CS61A

things defined by themselves

operationinput output :)

recursion
CS61A

things defined by themselves

operationinput output :)

tell me the number of
ways to line $26

recursion
CS61A

things defined by themselves

operationinput = 26 count :)

?

tell me the number of
ways to line $26

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
.
.
.

the blue boxes are operations!

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
.
.
.

output

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
.
.
.

output :(

def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

🙃
def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

recursion
CS61A

things defined by themselves

operationinput = 26 count :)

?

recursion
CS61A

things defined by themselves

functioninput = 26 count :)

?

recursion
CS61A

things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

the blue box is a function!

recursion
CS61A

things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

recursive leap of faith

recursion
CS61A

things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

recursive leap of faith

math (out of scope)

any recursive problem

you get is recursively possible

recursion
CS61A

things defined by themselves

if 0: +1
if < 0: +0

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

count

def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

function function

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

♥def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

so what does this mean
we have a strategy on how to create recursive functions

we can see that recursion isn’t pointless…

 at least for more complex problems

recursion
CS61A

things defined by themselves

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

$26

$25

$16
$21

$6
subproblem

recursion
CS61A

things defined by themselves

1.set up rules (base cases)

2.assume it works

recursion
CS61A

🤯

what does this mean

