
CS61A

section 2
upcoming

http://links.cs61a.org/jasonxu

lab 2

hw 2

hog

feedback

http://links.cs61a.org/jasonxu-feedback

http://links.cs61a.org/jasonxu
http://links.cs61a.org/jasonxu-feedback

CS61A

last week…
inputs of functions

internals of functions

outputs of functions

CS61A

review 1. 100 % 10 =

2. 241241//10 =

booleans
CS61A

bools have rules

TRUE FALSE

1 0

‘non-empty’ values ‘empty’ values

None

not > and > or

boolean operators
CS61A

and

or

not

<a> and …

<a> or …

not <a>

a b

1 0

1 1

0 0

boolean operators
CS61A

and

or

not

<a> and …

<a> or …

not <a>

a b

1 0

1 1

0 0

which 1?

boolean operators
CS61A

if it’s sunny and not hot

another approach

i will go for a run

only will do so when ‘<True> and <True>’
if it’s sunny or not hot

i will go for a run

will do so when either condition is true

booleans
CS61A

bools have rules

and looks for False

or looks for True

short circuit!

we can process faster

controls
CS61A

if <predicate>:
<do this>

elif <predicate>:
<do this>

else:
<do this>

if <predicate>:
<do this>

elif <predicate>:
<do this>

<do this>

controls
CS61A while <this>:

<do this>
<rest>

break
return

continue
<bottom of loop>

rest

function calls
CS61A

f(3 × 2) =

function calls
CS61A

f(3 × 2) = ?

function calls
CS61A

f(x) = 2x general formula, i can put in any x that is a number

function calls
CS61A

f(x) = 2x

x = 3 × 2

general formula, i can put in any x that is a number

function calls
CS61A

f(x) = 2x

x = 3 × 2

f(x) = 12

general formula, i can put in any x that is a number

i know f, x, can solve!

function calls
CS61A

f(x) = 2x

x = 3 × 2

double(z) = 2z

x = 3 × 2

double(x) = 12f(x) = 12

function calls
CS61A

f(x) = 2x

x = 3 × 2

double(z) = 2z

x = 3 × 2 double(3 × 2)

= 12double(x) = 12f(x) = 12

double(z) = 2z

functions
CS61A

There are 2 things to consider for a function

1.Input/Output of function

2.Body of function

functions
CS61A

There are 2 things to consider for a function

1.Input/Output of function

2.Body of function

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

output

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

output
‘simplified’ values…

‘simplified’ values…

values
CS61A

Strings "Say \"Hello\""Say “Hello”

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

output
simplified values…

simplified values…

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

output
simplified values…

simplified values…

<body>

returning
CS61A

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display x do nothing

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display 5 do nothing 5

return stops procedure and outputs something

print is an action, function
every function has a return at end of None

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)
return

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display 5 do nothing

EOF EOF

5

None

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

return stops procedure and outputs something

> val = showFivePrint()
5
> val
> val is None
True

print is an action, function

> val = showFiveReturn()
> val
5

return only 1 thing but can also return tuples (pair structures)

function calls
CS61A

> max(10 + 5, 9, double(18))
36

function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18)
max(15, 9, ?)
= ?

built-in func max(…)

function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

func double(x)

built-in func max(…)

x = 18
r.v. 36

function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

if any part of this breaks,

you get an error and stops

function calls
CS61A

> max(10 + 5, 9, 18 / 0)
error

max
10 + 5 = 15
9 = 9
18 / 0 = ?
max(15, 9, 18 / 0)
error

if any part of this breaks,

you get an error and stops

typing an error != will error

EVALULATE OPERATOR
EVALUATE OPERANDS
APPLY OPERATOR

CS61A

last week…
inputs of functions

internals of functions

outputs of functions

Higher
Order
Functions

CS61A

env. diagrams 101
on board

https://goo.gl/vrp5xG

CS61A

env. diagrams
when do i open a frame?

what is a function’s parent frame?

do we copy intrinsically same functions during assignment?

how do we look up variables?

CS61A

lambdas
lambda <arguments>: <return value>

lambda: lambda x: x

(lambda x: lambda x: x)(2)(3)

lambda x, y: x + y

which x?

recursion
CS61A

things defined by themselves

recursion
CS61A

things defined by themselves
NOT ON MT1
yay!

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 0 * -1!

uhhhhhhhhh

-1! = -1 * -2! …

when do i stop?

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 0 * -1!

uhhhhhhhhh

-1! = -1 * -2! …

base case!

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 1

yay! 😍

base case!

recursion
CS61A

factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

how do we come up with this
by definition, 😱
by assuming it works, 🤪

recursion
CS61A

factorial!

how do we calculate 5!
5! = 5 * 4!

for this to be true, don’t we have to

assume that ‘!’ really does what it says

well in code we can’t name a function ‘!’

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

we assume that (n-1)! works
recursive leap of faith
well… i have to test it by tracing it

well… big headache

recursion
CS61A

strategy

if you capture all the base cases
you can assume it works

so you can create the recursive call

recursion
CS61A

motivation for it

operationinput

recursion
CS61A

things defined by themselves

operationinput output

recursion
CS61A

things defined by themselves

operationinput output :)

recursion
CS61A

things defined by themselves

operationinput output :)

tell me the number of
ways to line $26

recursion
CS61A

things defined by themselves

operationinput = 26 count :)

?

tell me the number of
ways to line $26

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
.
.
.

the blue boxes are operations!

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
.
.
.

output

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
.
.
.

output :(

def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

🙃
def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

recursion
CS61A

things defined by themselves

operationinput = 26 count :)

?

recursion
CS61A

things defined by themselves

functioninput = 26 count :)

?

recursion
CS61A

things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

the blue box is a function!

recursion
CS61A

things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

recursive leap of faith

recursion
CS61A

things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

recursive leap of faith

math (out of scope)

any recursive problem

you get is recursively possible

recursion
CS61A

things defined by themselves

if 0: +1
if < 0: +0

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

.

.

.

if i use $20 as my first denomination

i have to figure out how to get the $6

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

count

def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

function function

def count_recurse(n):
 if n < 0:
 return 0
 elif n == 0:
 return 1
 else:
 return count_recurse(n - 1)
 + count_recurse(n - 5)
 + count_recurse(n - 10)
 + count_recurse(n - 20)

♥def count(n):
 total = 0
 options = [n]
 while len(options) > 0:
 curr = options.pop(0)
 for change in [1, 5, 10, 20]:
 val = curr - change
 if val == 0:
 total += 1
 elif val > 0:
 options.append(val)
 return total

so what does this mean
we have a strategy on how to create recursive functions

example too complex… for now

we can see that recursion isn’t pointless…

 at least for more complex problems

CS61A

midterm 1 10% of your grade
there’s extra credit on every project

epa points

CS61A

midterm 1 10% of your grade
there’s extra credit on every project

epa points

one test isn’t going to determine
if you should be a computer scientist

