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last week…
inputs of functions


internals of functions


outputs of functions
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review 1. 100 % 10 = 


2. 241241//10 =
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bools have rules

TRUE FALSE

1 0

‘non-empty’ values ‘empty’ values

None

not > and > or
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and

or

not

<a> and <b> …

<a> or <b> …

not <a>

a b

1 0

1 1

0 0



boolean operators
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and

or

not

<a> and <b> …

<a> or <b> …

not <a>

a b

1 0

1 1

0 0

which 1?
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if it’s sunny and not hot 

another approach

i will go for a run

only will do so when ‘<True> and <True>’
if it’s sunny or not hot 

i will go for a run

will do so when either condition is true
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bools have rules

and looks for False

or looks for True

short circuit!

we can process faster
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if <predicate>:
<do this>

elif <predicate>:
<do this>

else:
<do this>

if <predicate>:
<do this>

elif <predicate>:
<do this>

<do this>



controls
CS61A while <this>:

<do this>
<rest>

break
return

continue
<bottom of loop>

rest
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f(3 × 2) =
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f(3 × 2) = ?
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f(x) = 2x general formula, i can put in any x that is a number
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f(x) = 2x

x = 3 × 2

general formula, i can put in any x that is a number



function calls
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f(x) = 2x

x = 3 × 2

f(x) = 12

general formula, i can put in any x that is a number

i know f, x, can solve!
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f(x) = 2x

x = 3 × 2

double(z) = 2z

x = 3 × 2

double(x) = 12f(x) = 12



function calls
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f(x) = 2x

x = 3 × 2

double(z) = 2z

x = 3 × 2 double(3 × 2)

= 12double(x) = 12f(x) = 12

double(z) = 2z



functions
CS61A

There are 2 things to consider for a function


1.Input/Output of function


2.Body of function
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There are 2 things to consider for a function


1.Input/Output of function


2.Body of function
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we’re going to use these to see an abstract picture

of functions
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we’re going to use these to see an abstract picture

of functions

input
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we’re going to use these to see an abstract picture

of functions

input

output



black boxes
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we’re going to use these to see an abstract picture

of functions

input

output
‘simplified’ values…

‘simplified’ values…
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Strings "Say \"Hello\""Say “Hello”
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we’re going to use these to see an abstract picture

of functions

input

output
simplified values…

simplified values…



black boxes
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we’re going to use these to see an abstract picture

of functions

input

output
simplified values…

simplified values…

<body>
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return stops procedure and outputs something

print is an action, function
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def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

return stops procedure and outputs something

print is an action, function
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def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

return stops procedure and outputs something

print is an action, function
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def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display x do nothing

return stops procedure and outputs something

print is an action, function
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def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display 5 do nothing 5

return stops procedure and outputs something

print is an action, function
every function has a return at end of None
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def showFivePrint():
x = 2 + 3
print(x)
return

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display 5 do nothing

EOF EOF

5

None

return stops procedure and outputs something

print is an action, function
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def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

return stops procedure and outputs something

> val = showFivePrint()
5
> val
> val is None
True

print is an action, function

> val = showFiveReturn()
> val
5

return only 1 thing but can also return tuples (pair structures)
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> max(10 + 5, 9, double(18))
36
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> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36



function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18)
max(15, 9, ?)
= ?

built-in func max(…)
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> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

func double(x)

built-in func max(…)

x = 18
r.v. 36
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> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

if any part of this breaks,

you get an error and stops



function calls
CS61A

> max(10 + 5, 9, 18 / 0)
error

max
10 + 5 = 15
9 = 9
18 / 0 = ?
max(15, 9, 18 / 0)
error

if any part of this breaks,

you get an error and stops


typing an error != will error



EVALULATE OPERATOR 
EVALUATE OPERANDS 
APPLY OPERATOR
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inputs of functions


internals of functions


outputs of functions

Higher 
Order  
Functions
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env. diagrams 101  
on board

https://goo.gl/vrp5xG
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env. diagrams
when do i open a frame?

what is a function’s parent frame?

do we copy intrinsically same functions during assignment?

how do we look up variables?
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lambdas
lambda <arguments>: <return value>

lambda: lambda x: x

(lambda x: lambda x: x)(2)(3)

lambda x, y: x + y

which x?
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things defined by themselves



recursion
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things defined by themselves
NOT ON MT1
yay!
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factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!
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factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 0 * -1!

uhhhhhhhhh

-1! = -1 * -2! …

when do i stop? 
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factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 0 * -1!

uhhhhhhhhh

-1! = -1 * -2! …

base case!
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factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

5! = 5 * 4!
4! = 4 * 3!
3! = 3 * 2!
2! = 2 * 1!
1! = 1 * 0!

0! = 1

yay! 😍

base case!
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factorial!

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

how do we come up with this
by definition,  😱   
by assuming it works,  🤪   
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factorial!

how do we calculate 5!
5! = 5 * 4!

for this to be true, don’t we have to

assume that ‘!’ really does what it says

well in code we can’t name a function ‘!’ 

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n - 1)

we assume that (n-1)! works
recursive leap of faith
well… i have to test it by tracing it

well… big headache
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strategy

if you capture all the base cases
you can assume it works

so you can create the recursive call



recursion
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motivation for it

operationinput
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things defined by themselves

operationinput output
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things defined by themselves

operationinput output :)
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things defined by themselves

operationinput output :)

tell me the number of 
ways to line $26
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things defined by themselves

operationinput = 26 count :)

?

tell me the number of 
ways to line $26



if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

. 

. 

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
. 
. 
.

the blue boxes are operations!



if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

. 

. 

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
. 
. 
.

output



if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

. 

. 

.

if i use $20 as my first denomination

i have to figure out how to get the $6

if 0: +1

if i use $1 as my first denomination

i have to figure out how to get the $24
. 
. 
.

output :(



def count(n):
     total = 0
     options = [n]
     while len(options) > 0:
         curr = options.pop(0)
         for change in [1, 5, 10, 20]:
             val = curr - change
             if val == 0:
                 total += 1
             elif val > 0:
                 options.append(val)
     return total



🙃
def count(n):
     total = 0
     options = [n]
     while len(options) > 0:
         curr = options.pop(0)
         for change in [1, 5, 10, 20]:
             val = curr - change
             if val == 0:
                 total += 1
             elif val > 0:
                 options.append(val)
     return total
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things defined by themselves

operationinput = 26 count :)

?



recursion
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things defined by themselves

functioninput = 26 count :)

?
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things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

. 

. 

.

if i use $20 as my first denomination

i have to figure out how to get the $6

the blue box is a function!
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things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

. 

. 

.

if i use $20 as my first denomination

i have to figure out how to get the $6

recursive leap of faith
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things defined by themselves

if 0: +1

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

. 

. 

.

if i use $20 as my first denomination

i have to figure out how to get the $6

recursive leap of faith

math (out of scope)

any recursive problem 

you get is recursively possible
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things defined by themselves

if 0: +1 
if < 0: +0

i have to figure out how to get $26

if i use $1 as my first denomination

i have to figure out how to get the $25

. 

. 

.

if i use $20 as my first denomination

i have to figure out how to get the $6

def count_recurse(n):
     if n < 0:
         return 0
     elif n == 0:
         return 1
     else:
         return count_recurse(n - 1) 
            + count_recurse(n - 5) 
            + count_recurse(n - 10) 
            + count_recurse(n - 20)

count



def count(n):
     total = 0
     options = [n]
     while len(options) > 0:
         curr = options.pop(0)
         for change in [1, 5, 10, 20]:
            val = curr - change
             if val == 0:
                 total += 1
             elif val > 0:
                 options.append(val)
     return total

def count_recurse(n):
     if n < 0:
         return 0
     elif n == 0:
         return 1
     else:
         return count_recurse(n - 1) 
            + count_recurse(n - 5) 
            + count_recurse(n - 10) 
            + count_recurse(n - 20)



def count(n):
     total = 0
     options = [n]
     while len(options) > 0:
         curr = options.pop(0)
         for change in [1, 5, 10, 20]:
            val = curr - change
             if val == 0:
                 total += 1
             elif val > 0:
                 options.append(val)
     return total

def count_recurse(n):
     if n < 0:
         return 0
     elif n == 0:
         return 1
     else:
         return count_recurse(n - 1) 
            + count_recurse(n - 5) 
            + count_recurse(n - 10) 
            + count_recurse(n - 20)

function function



def count_recurse(n):
     if n < 0:
         return 0
     elif n == 0:
         return 1
     else:
         return count_recurse(n - 1) 
            + count_recurse(n - 5) 
            + count_recurse(n - 10) 
            + count_recurse(n - 20)

♥def count(n):
     total = 0
     options = [n]
     while len(options) > 0:
         curr = options.pop(0)
         for change in [1, 5, 10, 20]:
            val = curr - change
             if val == 0:
                 total += 1
             elif val > 0:
                 options.append(val)
     return total



so what does this mean
we have a strategy on how to create recursive functions

example too complex… for now

we can see that recursion isn’t pointless…

                       at least for more complex problems
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midterm 1 10% of your grade
there’s extra credit on every project

epa points
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midterm 1 10% of your grade
there’s extra credit on every project

epa points

one test isn’t going to determine  
if you should be a computer scientist 


