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a lot of mechanical details


not much why, just is today


“setting up the rules of the game”
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1.Input/Output of function
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f(x) = 2x

x = 3 × 2

f(x) = 12

general formula, i can put in any x that is a number

i know f, x, can solve!
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f(x) = 2x

x = 3 × 2

double(z) = 2z

x = 3 × 2 double(3 × 2)

= 12double(x) = 12f(x) = 12

double(z) = 2z
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we’re going to use these to see an abstract picture

of functions

input

output
simplified values…

simplified values…

<body>
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> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18)
max(15, 9, ?)
= ?

built-in func max(…)
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> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

func double(x)

built-in func max(…)

x = 18
r.v. 36
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36
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double(18) = 36
max(15, 9, 36)
= 36

if any part of this breaks,

you get an error and stops
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> max(10 + 5, 9, 18 / 0)
error

max
10 + 5 = 15
9 = 9
18 / 0 = ?
max(15, 9, 18 / 0)
error

if any part of this breaks,

you get an error and stops


typing an error != will error



EVALULATE OPERATOR 
EVALUATE OPERANDS 
APPLY OPERATOR



double(2 + 3)
double(…)
2 + 3
5
double(5)
10
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def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display 5 do nothing 5

return stops procedure and outputs something

print is an action, function
every function has a return at end of None
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def showFivePrint():
x = 2 + 3
print(x)
return

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display 5 do nothing

EOF EOF

5

None

return stops procedure and outputs something

print is an action, function
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def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

return stops procedure and outputs something

> val = showFivePrint()
5
> val
> val is None
True

print is an action, function

> val = showFiveReturn()
> val
5

return only 1 thing but can also return tuples (pair structures)
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if <predicate>:
<do this>

elif <predicate>:
<do this>

else:
<do this>

if <predicate>:
<do this>

elif <predicate>:
<do this>

<do this>
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bools have rules

TRUE FALSE

1 0

‘non-empty’ values ‘empty’ values

None
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not
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<a> or <b> …
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a b

1 0

1 1

0 0
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and

or

not

<a> and <b> …

<a> or <b> …

not <a>

a b

1 0

1 1

0 0

which 1?
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if it’s sunny and not hot 

another approach

i will go for a run

only will do so when ‘<True> and <True>’
if it’s sunny or not hot 

i will go for a run

will do so when either condition is true
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bools have rules

and looks for False

or looks for True

short circuit!

we can process faster



controls
CS61A while <this>:

<do this>

break
return

continue
<bottom of loop>

rest
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worthwhile to learn

~ > 30% of MT1

all these slides… maybe too much but describe how to think in cs

which is what env diagrams do!

a lot of rules… but internalize them so they become intuitive


