
CS61A

section 1
attendance

upcoming

http://links.cs61a.org/jasonxu

lab 0

lab 1

hw 1

hog

http://links.cs61a.org/jasonxu

CS61A

lab 0

CS61A

today
a lot of mechanical details

CS61A

today
a lot of mechanical details

not much why, just is today

CS61A

today
a lot of mechanical details

not much why, just is today

“setting up the rules of the game”

functions
CS61A

There are 2 things to consider for a function

1.Input/Output of function

2.Body of function

functions
CS61A

There are 2 things to consider for a function

1.Input/Output of function

2.Body of function

function calls
CS61A

f(3 × 2) =

function calls
CS61A

f(3 × 2) = ?

function calls
CS61A

f(x) = 2x general formula, i can put in any x that is a number

function calls
CS61A

f(x) = 2x

x = 3 × 2

general formula, i can put in any x that is a number

function calls
CS61A

f(x) = 2x

x = 3 × 2

f(x) = 12

general formula, i can put in any x that is a number

i know f, x, can solve!

function calls
CS61A

f(x) = 2x

x = 3 × 2

double(z) = 2z

x = 3 × 2

double(x) = 12f(x) = 12

function calls
CS61A

f(x) = 2x

x = 3 × 2

double(z) = 2z

x = 3 × 2 double(3 × 2)

= 12double(x) = 12f(x) = 12

double(z) = 2z

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

output

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

output
‘simplified’ values…

‘simplified’ values…

values
CS61A

Strings "Say \"Hello\""Say “Hello”

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

output
simplified values…

simplified values…

black boxes
CS61A

we’re going to use these to see an abstract picture

of functions

input

output
simplified values…

simplified values…

<body>

function calls
CS61A

> max(10 + 5, 9, double(18))
36

function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18)
max(15, 9, ?)
= ?

built-in func max(…)

function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

func double(x)

built-in func max(…)

x = 18
r.v. 36

function calls
CS61A

> max(10 + 5, 9, double(18))
36

max
10 + 5 = 15
9 = 9
double(18) = 36
max(15, 9, 36)
= 36

if any part of this breaks,

you get an error and stops

function calls
CS61A

> max(10 + 5, 9, 18 / 0)
error

max
10 + 5 = 15
9 = 9
18 / 0 = ?
max(15, 9, 18 / 0)
error

if any part of this breaks,

you get an error and stops

typing an error != will error

EVALULATE OPERATOR
EVALUATE OPERANDS
APPLY OPERATOR

double(2 + 3)
double(…)
2 + 3
5
double(5)
10

returning
CS61A

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display x do nothing

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display 5 do nothing 5

return stops procedure and outputs something

print is an action, function
every function has a return at end of None

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)
return

def showFiveReturn():
x = 2 + 3
return x

computing 2 + 3 and storing it to x

display 5 do nothing

EOF EOF

5

None

return stops procedure and outputs something

print is an action, function

returning
CS61A

def showFivePrint():
x = 2 + 3
print(x)

def showFiveReturn():
x = 2 + 3
return x

return stops procedure and outputs something

> val = showFivePrint()
5
> val
> val is None
True

print is an action, function

> val = showFiveReturn()
> val
5

return only 1 thing but can also return tuples (pair structures)

controls
CS61A

if <predicate>:
<do this>

elif <predicate>:
<do this>

else:
<do this>

if <predicate>:
<do this>

elif <predicate>:
<do this>

<do this>

booleans
CS61A

bools have rules

TRUE FALSE

1 0

‘non-empty’ values ‘empty’ values

None

boolean operators
CS61A

and

or

not

<a> and …

<a> or …

not <a>

a b

1 0

1 1

0 0

boolean operators
CS61A

and

or

not

<a> and …

<a> or …

not <a>

a b

1 0

1 1

0 0

which 1?

boolean operators
CS61A

if it’s sunny and not hot

another approach

i will go for a run

only will do so when ‘<True> and <True>’
if it’s sunny or not hot

i will go for a run

will do so when either condition is true

booleans
CS61A

bools have rules

and looks for False

or looks for True

short circuit!

we can process faster

controls
CS61A while <this>:

<do this>

break
return

continue
<bottom of loop>

rest

environment diagrams
CS61A

worthwhile to learn

~ > 30% of MT1

all these slides… maybe too much but describe how to think in cs

which is what env diagrams do!

a lot of rules… but internalize them so they become intuitive

