
section 05
links.cs61a.org/jasonxu (password: mutation)

Recursion Review
some things are very repetitive…

you’re on a ladder… climbing down from the 10th step and
the 1st step is the same instruction… but at a different state

instruction:
at your current step, take a step down

subset sum
given a list of numbers, does some combination of the #s add to k?

example set:
(1, 2, 3)

how to enumerate every subset (aka powerset)
(in, in, in), (in, in, out), (in, out, out), (out, in, in),
(out, out, in), (out, out, out), (in, out, in), (out, in, out)
or
{(in) + subsets((2, 3)), (out) + subsets((2, 3))}

look at the curr number, it is either in or out
we can always make a sum of 0 with any set?

subset sum
example set:
(1, 2, 3), k = 6

1,
2, 3

2,
3

2,
3

3 3 … 3

use 1

use 2

use 3

no 2

no 1

no 2

use 2

no 3 no 3use 3
use 3

true false false false false

subset sum
example set:
(1, 2, 3), k = 3

…

use 1

use 2

use 3

no 2

no 1

no 2

use 2

no 3 no 3use 3
use 3

false true false false trueOR OR OR

OR
OR

subset sum

Data Abstraction

How to get information
out of abstractions

Structures

List abstraction

Tree abstraction

‘ordered’ objects

Immutable

Copying, slicing, new abstractions

Mutable

Pointers!

Append, extend, pop

nonlocal

Traversing

Iterators!

Generators!

Trees
Recursive!

Abstraction barrier!
Will come back next week

root

child

leaf
descendent

List comprehension to apply recursive function onto
each subtree… same thing as tree recursion except
now physical representation.

Can do so since branch is a ‘smaller’ problem

branch

root

child

leaf
descendent

List comprehension to apply recursive function
onto each subtree… same thing as tree
recursion except now physical representation.

Can do so since branch is a ‘smaller’ problem

branch

def dumb_tree_func(t):

if is_leaf(t):

return tree(label(t))

return tree(label(t), \

[b for b in branches(t)])

1

3

4
5

Tree t

2

dumb_tree_func(t):

1

This tree gives you the same tree values, but it
isn’t a copy

root

child

leaf
descendent

List comprehension to apply recursive function
onto each subtree… same thing as tree
recursion except now physical representation.

Can do so since branch is a ‘smaller’ problem

branch
def dumb_tree_func(t):

if is_leaf(t):

return tree(label(t))

return tree(label(t), \

[d_t_func(b) for b in branches(t)])

Yay! Correctly copies a tree!

Back in time

Uhhhhhh… what do the arrows mean in environment
diagrams?

Back in time

Probably heard me say ‘pointer’... time to formalize

Space efficiency, dealing with only 1 object, why make 100 copies?

Create a reference pointer to that object instead of duplicating

Useful now? Lists are objects!

== means value-equality
is means object-equality
len(lst) returns size of list

Back in time

lst = [1, 2, 3, [5, 6]]
#object is [1, 2, 3, [5, 6]], lst is a pointer!
#4th element is a pointer to [5, 6] object

a = lst
#a points to the same object as lst, not to lst
#a is lst

lst[0] = [5, 6]
#a is [[5, 6], 2, 3, [5, 6]]

So how do I make a copy?
I can’t just do an assignment! Why?

What does it mean to copy?

Shallow
Artificial copy, including copy of
pointers, not objects just values

Deep
Copies values and objects!

recursion!

Shallow
Artificial copy, including copy of

pointers, not objects just ‘values’

Deep
Copies values and objects!

recursion!

Easy: how?
Bit m

ore involved…

how do we copy

trees?

List Slicing -- new shallow copy

lst[<start>:<end>:<step>], default[0: len(lst), 1]

Bounds: [start, end)
No such thing as an invalid bound: returns empty list, not error if incorrect

Determine start & end depending on sign of step,

do slicing and return new list

Shallow
Artificial copy, including copy of
pointers, not objects just values

Deep
Copies values and objects!

recursion!

Easy: how?
Bit m

ore involved…

how do we copy

trees?

root

child

leaf
descenden
t

List comprehension to apply recursive function
onto each subtree… same thing as tree
recursion except now physical representation.

Can do so since branch is a ‘smaller’ problem

branch

def dumb_tree_func(t):

if is_leaf(t):

return tree(label(t))

return tree(label(t), \

[d_t_func(b) for b in branches(t)])

def dumb_list_func(lst):

 new_lst = []

 for item in lst:

 if is_list(item):

 new_lst += [dlf(item)]

 else:

 new_lst += [item]

 return new_lst

1 2

3 4 5

6 7 8

‘leaves’

‘branches
’

What
happens if i
don’t put
brackets
here?

def list_copy(lst):

if not is_list(lst):

return lst

return [lc(item) for item in lst]

terrible design… why?

Look at return type

1 2

3 4 5

6 7 8

‘leaves’

‘branches
’

Break time?

links.cs61a.org/jasonxu (password: mutation)

List Operations
operation domain range what it does

append() any element
can be string or list

None Adds exactly one extra
element to the list; uses
pointer if the input doesn't
“fit”

extend() list None Mutates (puts all elements
from the list and adds it
directly to the end of the
original list)

+= *** lst None Mutates

lst = lst + otherlst lst None Makes new list, assigns to
lst

list() iterable List Iterates through the input
and adds each element to a
(newly-made) list

Lists
lst = [1, 2, [3, 4, 5]]

>>>lst
[1, 2, [3, 4, 5]]
>>>lst[:]
[1, 2, [3, 4, 5]]
>>>a = lst[:]
>>>lst[1] = 9
>>>lst
[1, 9, [3, 4, 5]]
>>>a
[1, 2, [3, 4, 5]]
>>>a[2][2] = -1
>>>a
[1, 2, [3, 4, -1]]
>>>lst
[1, 9, [3, 4, -1]]

Lists
lst = [1, 2, 3, 4, 5]

>>>lst.extend(5)
Error
>>>lst.extend([5, 6])
>>>lst
[1, 2, 3, 4, 5, 5, 6]
>>>lst.extend((6, 6, 7))
[1, 2, 3, 4, 5, 5, 6, 6, 6, 7]
>>>lst = lst[5::2]
>>>lst
[5, 6, 7]
>>>lst.extend({‘hi’: 2, ‘1’: 1})
>>>lst
[5, 6, 7, ‘hi’, ‘1’]
>>>a = lst.append(10)
>>>a
>>>lst.append([100])
>>>lst
[5, 6, 7, ‘hi’, ‘1’, 10, [100]]

Lists
.pop(<i>) removes and returns

index i element.

>>>lst.pop()
5
>>>lst
[1, 2, 3, 4]
>>>lst.pop(0)
1
>>>lst
[2, 3, 4]
>>>a = lst
>>>a
[2, 3, 4]
>>>a = a + [lst.pop(2)]
>>>a
[2, 3, 4] #not [2, 3, 4, 4],
why?
>>>lst
[2, 3]

List Operations -- pt. 2
operation domain range what it does

insert(i, x) Index (if over, insert
last, if under insert
first) [negative
indexing ok!], element

None Adds exactly one extra
element to the list at index i

remove(x) item None,
Error

Takes out first instance of x
in list, throws error
otherwise

Tuples are
immutable…

so are…?
This is why we erase certain values in environment
diagrams

nonlocal
unbound local error

scoping -- essentially what my
current frame can see, access,
modify

def f():
x = 5

def g():
print(x)
x += 1
return ‘success’

return g()

def check():
print(x)

>>>f()
Error
>>>f()
Error

nonlocal
unbound local error

RESOLVED

Notice placement of nonlocal

def f():
x = 5

def g():
nonlocal x
print(x)
x += 1
return ‘success’

return g()

def check():
print(x)

>>>f()
5
‘success’ #caution: return
value!
>>>f()
6
‘success’

global
explore a little!

same idea, though
exercise for the reader

x = 5
def f()

global x
print(x)
x += 1
return ‘success’

def check():
print(x)

>>>f()
5
‘success’ #caution: return
value!
>>>check()
6

